

220053, г. Минск, Долгиновский тракт, 39-237а

тел./факс: (017) 284-99-94

E-mail: 000-inkom@mail.ru inkom@tut.by

Лауреат международной награды "Золотой Ягуар" за безупречную репутацию в бизнесе и высокое качество продукции и услуг

официальный представитель в Республике Беларусь

Сорбенты Waters Oasis для твердофазной экстракции.

Содержание.

Сорбент Oasis® HLB.	3
Сорбент Oasis® MCX	8
Сорбент Oasis® MAX	10
Применение колонок Oasis®	13
Перечень продукции с сорбентами Oasis®	15
Пример адаптации стандартного метода	18
Плашки Oasis® µElution.	23

1. ПАТРОНЫ OASIS® HLB.

І. ВВЕДЕНИЕ.

Обычно требуются значительные усилия и затраты времени для выбора подходящего сорбента и протокола твердофазной экстракции¹. Ограничения, накладываемые обычными сорбентами, требуют от аналитика пристального внимания к контролю над каждым шагом экстркционной процедуры. И даже тогда довольно трудно достигнуть полного и воспроизводимого выхода полярных молекул и их метаболитов. Waters разработал новый полимерный SPE сорбент, устраняющий многие трудности пробоподготовки и повышающий производительность.

Традиционные методы SPE.

Наиболее часто используемые сорбенты это частицы пористого силикагеля с привитыми по поверхности цепочками С18 мли другими гидрофобными алкильными группами. Перед использованием сорбент должен быть подготовлен с помощью смешиваемого с водой органического растворителя для увлажнения алкильных групп а затем уравновешен водой или буферным раствором. Поскольку сорбент не является гидрофильным, нужно заботиться о том, что бы сорбент оставался увлажненным непосредственно перед загрузкой образца. Невыполнение этого условия приводит к неправильному взаимодействию образец-сорбент, что является главной причиной низкого выхода и плохой воспроизводимости.

Для преодоления этих недостатков Waters разработал новый патентованый полимерный сорбент [poly(divinylbenzene-co-N-vinylpyrrolidone)], обладающий одновременно свойствами гидрофильности и липофильности. Аббревиатура HLB (Hidrophylic-Lipophylic Balance) из названия сорбента отражает два его важных уникальных свойства:

- Способность оставаться увлажненным водой;
- Способность удерживать широкий спектр полярных и неполярных молекул.

Puc. 1.1 Структура сорбента Oasis HLB

 $^{^2}$ Патенты США № 5,882,521 (1996); 5,976,376 (1998); 6,106,721 (1999), 6,254,780 (2001), 6,322,695 (2001).

¹ Solid Phase Extraction – SPE.

Характеристики сорбента.

Средний диаметр пор, Å	82
Специфическая площадь поверхности, м ² /г	831
Полный объем пор, см ² /г	1.4
Средний диаметр частиц, мкм	31.4
Процент крошек	0.1%

Сорбент Oasis доступен в разных форматах – патроны, плашки, колонки. Сертификат анализа прилагается к каждой коробке, отражая выход и отклонения (RSD) для трех полярных фармацевтических молекул.. Сертификат представляет результаты анализа, выполненные для всей партии сорбента и конкретной упаковки готового товара.

Патроны производятся как в виде стандартных пластиковых шприцов, так и в виде специальных патронов типа Vac RC и Plus для использования со специальными роботизированными системами. Ести так же патроны в стеклянном исполнении для анализа фенолов и фталатов в концентрации 1 часть на миллиард.

II. ВЛИЯНИЕ ВРЕМЕНИ ВЫСЫХАНИЯ СОРБЕНТА НА ВЫХОД ВЕЩЕСТВА.

Эффект влияния времени высыхания сорбента на выход фармацевтических компонентов из сыворотки свиной крови показан на примере патронов Oasis® HLB и Varian Bond Elut® C_{18} . Для измерений выхода веществ использовалась хроматографическая система Waters насос 600 / автоинжектор 717 / детектор 486. Для работы с патронами применялась 20-и позиционная вакуумная установка производства фирмы MSE, Торранс, Калифорния.

В свежеприготовленную сыворотку добавлялись по 10 мкг/л прокайномида, ацетаминофена, ранитидина – раствор I (полярные компоненты) или 10 мкг/л пропанолола и доксепина – раствор II (неполярные компоненты). Все анализы повторены трижды. Процедура пробоподготовки выполнялась следующим образом. 1 сс, 100 мг патрон Bond Elute C₁₈ и 1сс 30 мг Oasis HLB сначала подготавливались 1 мл метанола. После пропускания метанола через патрон вакуум поддерживался на протяжении 0, 10, 30, 60, 120, 240 и 480 сек. Затем пропускался 1 мл воды и 1 мл плазмы. Патроны промывались 1 мл воды (Bond Elute) или 1 мл 5% метанола в воде (Oasis). Анализируемые молекулы затем смывались 1 мл метанола. В смыв добавлялось 10 мкл внутреннего стандарта (концентрация 1000 мкг/мл, сульфаниламид для раствора I, бутилпарабен для раствора II). Образцы анализировались методом ВЭЖХ.

Рисунок 1.2 показывает зависимость процента выхода вещества (Recovery) от времени высыхания (Drying Time). Видно, что выход наиболее полярных компонентов значительно уменьшается уже во время первой минуты высыхания. Это вызвано гидрофобным коллапсом алкильных цепочек на поверхности силикагельных частиц когда увлажняющий растворитель уходит. Все обращенно-фазовые сорбенты (C_{18} и PS-DVB) ведут себя подобным образом.

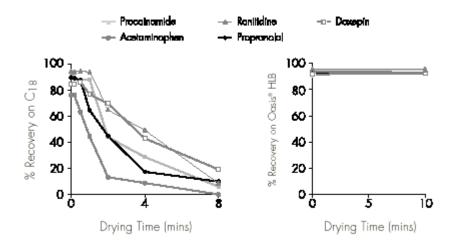


Рис. 1.3 Зависимость выхода от времени высыхания сорбента.

Результаты теста наиболее показательны для ситуации, когда в вакуумной установке одновременно обрабатывается множество образцов. В этом случае нужно наблюдать за каждым патроном, что бы недопустить случайного пересыхания, что становится трудным при увеличении количества обрабатываемых патронов (например, как в случае с плашками на 96 лунок). Способность патронов Oasis оставаться влажными приводит к тому, что выход и воспроизводимость остаются постоянными, пробоподготовка становится более легкой и эффективной. В дополнение повышается скорость обработки, поскольку теперь нет необходимости выключать и включать вакуум для того или иного патрона, манипулируя стоп-кранами.

III. МЕТОДЫ ПРОБОПОДГОТОВКИ С ПОМОЩЬЮ ПАТРОНОВ OASIS HLB.

Этот раздел предлагает методы экстрагирования для сорбента Oasis HLB. Рассматриваются небольшие различия в процедуре для специфических применений. Параграф А описывает стандартный протокол, а параграф В – шаги, необходимые для адаптации метода. Параграф С приводит рецептуру специального раствора.

Параграф А. Стандартный протокол.

1.	Добавьте 10 – 50 мкл внутреннего стандарта в 1 мл образца Для образцов, сильно связанных с белками плазмы, добавьте 20 мкл фосфорной кислоты.		
2.	При необходимости очистите образец центрифугированием при 8000 G в течении 20 мин.		
	Поместите патроны или плашки Oasis HLB в вакуумную установку и		
3.	установите вакуум 5 дюймов ртутного столба. Индивидуальные стоп-краны не		
	нужны.		
4.	Экстрагирование:		
	После того как сорбент был подготовлен (conditioned), нет необходтмости		
	поддерживать его влажным до момента загрузки образца. Поддерживайте		
Замечание 1.	непрерывный вакуум на всех патронах, установленных в вакуумную установку		
	на протяжении шагов 4а – 4d. Для загрузки (4c) и сбора (4e) не превышайте скорости 2 мл/мин. На других этапах приемлемы расходы до 10 мл/мин.		
	Объемы растворов, применяемых на каждом этапе, могут изменяться в		
	зависимости от размеров патронов и специфических условий. Так, например,		
Замечание 2.	96-луночная плашка с 10 мг сорбента на лунку требует не более 200 мкл		
	1 , 1 ,		
	раствора на этап. Сверяйтесь с инстркцией к конкретному продукту.		
4a	Кондиционирование. Пропустите 1 мл метанола.		
4b	Уравновешивание. Пропустите 1 мл воды.		
4c	Загрузка. Пропустите 1 мл образца.		
4d	Промывка. Пропустите 1 мл 5% метанола в воде. Уберите вакуум. Замените подставку с пробирками для сбора смывов на подставку с пробирками для		

	сбора анализируемых веществ. Включите вакуум.		
4e	Сбор. Пропустите 1 мл метанола.		
5	При необходтмости высушите и растворите в подходящем растворителе для последующего анализа.		

Параграф В. Адаптация метода.

Добавьте 1 мл раствора PBS (см. параграф 3) к образцу. Следуйте стандартной процедуре но собирайте смывы в отдельные пробирки на каждом из этапов 4с — 4е. Этап 4е повторите еще раз, соьрав смыв отдельно. Проанализируйте все 4 смыва. Используйте нижеприведенную таблицу для определения необходимых поправок к методу с целью улучшения выхода.

Параграф С. <u>Приготовление Phosphate-Buffered Saline (PBS).</u>

В 1 л сосуд добавьте следующие безводные соли:

- 200 mg KCl
- 8000 мг NaCl
- 200 Mg KH₂PO₄
- 1150 мг Na₂HPO₄

Налейте 1 л деионизованной воды, размешайте до растворения.

Приведите к рН 7.0 с помощью 10% фосфорной кислоты.

Если эта фракция				
содержит исследуемые	Выполните следующие рекомендации			
молекулы				
	Сорбент Oasis удерживает ионизированные молекулы сильнее чем обычный сорбент С18. Однако удерживание может быть усилено, когда ионизация подавлена. Для молекул с кислотными свойствами			
4с Загрузка	доведите рН по крайней мере на 2 единицы меньше чем рКа			
	кислоты. Для основных молекул доведите рН на две единицы выше			
	рКα кислоты.			
4d Промывка	Выход очень полярных молекул может быть улучшен использованием чистой воды вместо 5% метанола в воде.			
4е Первый сбор	Если получен приемлемый выход (более 90%), дальнейшая адаптация не требуется.			
4е Второй сбор	Для очень неполярных молекул метанол может оказаться недостаточно сильным растворителем. Используйте ацетонитрил или этилацетат вместо метанола или после него. Кроме того для ионизуемых молекул в метанол можно добавить 2% кислоты или			
	щелочи соответственно.			

2. ПАТРОНЫ OASIS® MCX.

I. ВЕДЕНИЕ.

Сорбент Oasis® MCX представляет собой полимер со смешаной обращенно-фазовой и катион-обменной функциональностью. Сильные катион-обменные группы сернистой кислоты расположены на поверхности части сорбента Oasis HLB. Главное различие между HLB и MCX типами в особой избирательности MCX к основным веществам.

Puc. 2.1 Структура сорбента Oasis MCX

Сульфонация проводится в тщательно контролируемых условиях на уровне 1.0 meq/g.

МСХ сорбент позволяет получать чистые экстракты из мочи, крови, плазмы, сыворотки, почвы, воды для для последующего анализа с применением ВЭЖХ, ГЖХ и.т.д. Как и сорбент HLB, МСХ так же доступен в двух вариантах: с частицами 30 и 60 мкм. Последний применяется для более вязких образцов.

Сертификат анализа отражает результаты выделения следующих веществ в соответствии с протоколом, приведенным ниже:

Слабокислый барбитал, нейтральный аминофен и основные амфетамин, толуидин, прокайнамид.

Параграф А. Стандартный протокол для сорбента Oasis MCX.

Указаны объемы растворителей для патронов 1cc/30 mg.

1. Кодиционирование.	Пропустите 1 мл метанола, затем 1 мл воды.		
2. Загрузка.	1 мл подкисленного образца. При низких рН все основания пребывают в ионизированном состоянии и удерживаются по ионобменному механизму, а нейтральные и кислые молекулы — по обращенно-фазовому.		
3. Промывка 1.	1мл 0.1N HCl. Удаляет белки и привязывает щелочные молекулы к сорбенту по ион-обменному механизму.		
4. Промывка 2.	1 мл 100% метанола. Удаляет молекулы, удерживаемые гидрофобным взаимодействием. Можно использовать для сбора нейтральных и кислых фракций.		
5.	1 мл не более чем 60% метанола с 5% NH ₄ OH для удаления		
Промывка 3.	основных соединений более полярных чем анализируемые		
(при необходимости)	молекулы.		
6. Сбор.	1 мл 5% NH_4OH в метаноле.		

Параграф В. Адаптация метода.

Взаимодействие с белками. Понизьте pH образца добавлением в 1 мл плазмы 20 мкл $\rm H_3PO_4$ или 10 мл 5-нормальной HCl в 1 мл мочи.

Повторите стандартную процедуру используя раствор PBS как образец. Собирайте смывы после каждого шага. Последний смыв (6) проделайте дважды. Проанализируйте все смывы на предмет наличия в них аналита. Применяйте следующие рекомендации для оптимизации выхода.

Если во фракции обнаружен аналит.	Проделайте следующее.		
2. Загрузка.	Сорбент Oasis MCX может быть использован в диапазоне pH 0 – 14. Удерживание для кислых аналитов может быть усилено, когда их ионизация подавлена. Для молекул с кислотными свойствами доведите pH по крайней мере на 2 единицы меньше чем pKα кислоты. Щелочные аналиты должны быть ионизированы для лучшего удерживания. Доведите pH образца ниже 5.		
3. Промывка 1.	Используйте патрон с больщим содержанием сорбента.		
4. Промывка 2.	Если выход нейтральных и кислых компонентов на данном этапе составляет больше 90%, дальнейшие изменения метода не		

	требуются. Если выход неудовлетворителен, используйте больший
	объем метанола или более сильный растворитель (метанол или
	этилацетат). Если используется растворитель, несмешиваемый с
	водой, просушите патрон под вакуумом в течении 5 минут.
5.	Если основные аналиты присутствуют, уменьшите содержание
_	метанола. Если присутствуют так же нейтральные и кислые
Промывка 3. (при необходимости)	аналиты, увеличьте объем метанола на предыдущем этапе или
	замените его более сильным.
6.	Если получен выход более 90%, дальнейшая адаптация не
Сбор.	требуется.
Повторная элюция	Для очень неполярных аналитов можно увеличить объем
	растворителя или заменить метанол на ацетонитрил или этилацетат.
5% NH ₄ OH в метаноле	Можно так же использовать их последовательно.

3. ПАТРОНЫ OASIS® MAX.

І. ВЕДЕНИЕ.

Сорбент Oasis® MAX представляет собой полимер со смешаной обращенно-фазовой и анион-обменной функциональностью. Сильные анион-обменные группы четветричного амина расположены на поверхности частиц сорбента Oasis HLB. Главное различие между HLB и MAX типами в особой избирательности MAX к молекулам с кислыми свойствами.

Рис. 3.1 Структура сорбента Oasis MAX

Сертификат анализа для сорбента Oasis MAX отражает результаты выделения следующих веществ в соответствии с протоколом, приведенным ниже:

Слабокислый секобарбитал, основный нортриптилин и кислые препараты: салициловая кислота, кетопрофен, напроксен.

II. ПРИГОТОВЛЕНИЕ РЕАГЕНТОВ.

Phosphate-Buffered Saline (PBS).

На 250 мл воды добавьте:

- 50 mg KCl
- 2000 мг NaCl
- 50 мг КН₂РО₄
- 288 мг Na₂HPO₄

Налейте 1 л деионизованной воды, размешайте до растворения.

Приведите к рН 7.0 с помощью 10% фосфорной кислоты.

50 мМ ацетат натрия / метанол (95 / 5)

В 1 л воды добавьте:

- 6.80 г ацетата натрия, размешайте, доведите рН до 7 10% ледяной уксусной кислотой.
- Добавьте 53 мл (41.6 г) метанола, размешайте.
- Храните при 4 °С не более 6 месяцев.

2% муравьиная кислота в метаноле.

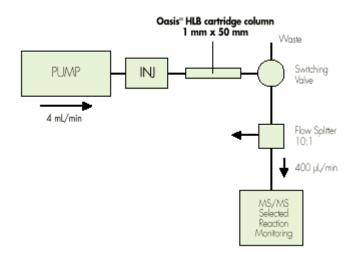
Добавьте 2 мл концентрированной муравьиной кислоты в \sim 60 мл метанола. Долейте метанолом до метки. Размешайте. Готовьте свежий раствор ежедневно.

Параграф А. Стандартный протокол для сорбента Oasis MAX.

Указаны объемы растворителей для патронов 1cc/30 mg.

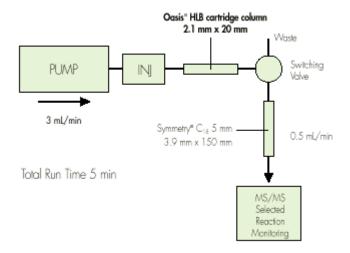
1. Кодиционирование.	Пропустите 1 мл метанола, затем 1 мл воды.	
	1 мл подкисленного образца. При низких рН все основания	
2.	пребывают в ионизированном состоянии, а кислые и нейтральные	
Загрузка.	вещества нейтральны. Все аналиты удерживаются по обращенно-	
	фазовому механизму.	
3.	1мл 50мМ NaAc / MeOH. Удаляет белки и привязывает кислые	
Промывка 1.	вещества к сорбенту по ион-обменному механизму.	

4. Промывка 2.	1 мл 100% метанола. Удаляет молекулы, удерживаемые гидрофобным взаимодействием. Можно использовать для сбора нейтральных и щелочных фракций.
5. Сбор.	1 мл 2% муравьиной кислоты в метаноле.


Параграф В. Адаптация метода.

Если во фракции обнаружен аналит.	Проделайте следующее.		
2. Загрузка.	Сорбент Oasis MAX может быть использован в диапазоне pH 0 – 14. Удерживание для кислых аналитов может быть усилено, когда они находятся в ионизированном состоянии. Для молекул с кислотными свойствами доведите pH по крайней мере на 2 единицы выше чем pKa кислоты.		
3. Промывка 1.	Используйте патрон с большим содержанием сорбента.		
4. Промывка 2.	Если выход нейтральных и осно́вных компонентов на данном этапе составляет больше 90%, дальнейшие изменения метода не требуются. Если выход неудовлетворителен, используйте больший объем метанола или более сильный растворитель (метанол или этилацетат). Если используется растворитель, несмешиваемый с водой, просушите патрон под вакуумом в течении 5 минут. Если в смыве обнаружены кислые аналиты, используйте 2%NH ₄ OH в метаноле на этапе Промывка 1.		
5. Промывка 3. (при необходимости)	Если кислые аналиты присутствуют, уменьшите содержание метанола. Если присутствуют так же нейтральные и основные аналиты, увеличьте объем метанола на предыдущем этапе или замените его более сильным.		
6. Сбор.	Если получен выход более 90%, дальнейшая адаптация не требуется.		
Повторная элюция 2% муравьиная кислота в метаноле	Для очень неполярных кислых аналитов можно увеличить объем растворителя или заменить метанол на ацетонитрил или этилацетат. Можно так же использовать их последовательно.		

4. ИСПОЛЬЗОВАНИЕ КОЛОНОК OASIS.



Микроборные колонки Oasis удобно использовать в ультрабыстрых анализах с применением масс-спектрометрии. Разбавленная плазма без предварительной подготовки инжектируется на колонку Oasis, которая затем промывается для удаления белков и др. веществ матрицы. Быстрый градиент применяется для смыва аналита, который идентифицируется масс-детектором.

Puc. 4.1 Схема использования колонки Oasis в on-line режиме.

Puc. 4.2 Схема использования колонки Oasis в on-line режиме в комбинации с колонкой C18.

Анализ многокомпонентных смесей может быть выполнен с помощью комбинации колонки Oasis и обычной обращенно-фазовой колонки.

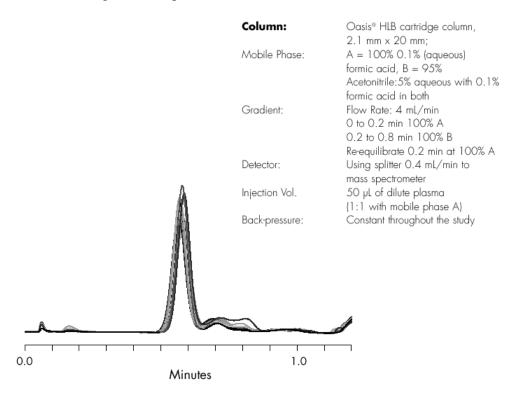


Рис. 4.1 Наложение хроматограмм толиамида после 360 инжекций плазмы.

5. ПЕРЕЧЕНЬ ПРОДУКЦИИ С СОРБЕНТАМИ OASIS

Oasis HLB				
P/N	Описание	Объем, размер	Размер частиц, µm	Количество
183000383	Патрон	1cc/10mg	30	100
094225	Патрон	1cc/30mg	30	100
058885	Патрон с адаптером Gilson ASPC	1cc/30mg	30	500
094226	Патрон	3cc/60mg	30	100
058883	Патрон	3cc/60mg	30	500
106202	Патрон	6cc/200mg	30	30
186000115	Патрон	6cc/500mg	60	30
186000116	Патрон	12cc/500mg	60	20
186000117	Патрон	20cc/1g	60	20
186000118	Патрон	35cc/1g	60	10
186000132	Патрон Plus	225mg	60	50
186000382	Патрон Vac RC	30	30	50
186000381	Патрон Vac RC	60	30	50
186000683	Стеклянный патрон	5cc/200mg	60	30
186000258	Патрон Prospect ³	2*10mm/15mg	30	100
186000309	Плашка, 96 лунок	5mg	30	1
186000128	Плашка, 96 лунок	10mg	30	1
058951	Плашка, 96 лунок	30mg	30	1
186000679	Плашка, 96 лунок	60mg	60	1
186000119	Колонка	1*50 мм	30 μm	1
186000706	Колонка картриджная ⁴	2.1*20 мм	25 μm	1

³ Для использования с ситемой Spark Holland Prospect
⁴ Используется с корпусом, P/N 186000262, Holder Kit for 2.1*20 mm column

Waters

Oasis MCX				
P/N	Описание	Объем, размер	Размер частиц, µт	Количество
186000252	Патрон	1cc/30mg	30	100
186000782	Патрон	1cc/60mg	60	100
186000254	Патрон	3cc/60mg	30	100
186000253	Патрон	3cc/60mg	60	100
186000256	Патрон	6cc/150mg	30	30
186000255	Патрон	6cc/150mg	60	30
186000776	Патрон	6cc/500mg	60	30
186000777	Патрон	20cc/1g	60	20
186000778	Патрон	35cc/6g	60	10
186000261	Патрон Vac RC	60mg	30	50
186000380	Патрон Vac RC	60mg	60	50
186000259	Плашка, 96 лунок	10mg	30	1
186000248	Плашка, 96 лунок	30mg	30	1
186000250	Плашка, 96 лунок	30mg	60	1
186000678	Плашка, 96 лунок	60mg	60	1
		Oasis MAX		
P/N	Описание	Объем, размер	Размер частиц, µm	Количество
186000366	Патрон	1cc/30mg	30	100
186000367	Патрон	3cc/60mg	30	100
186000368	Патрон	3cc/60mg	60	100
186000369	Патрон	6cc/150mg	30	30
186000370	Патрон	6cc/150mg	60	30
186000865	Патрон	6cc/500mg	60	30
186000372	Патрон Vac RC	30mg	30	50
186000371	Патрон Vac RC	60mg	30	50
186000378	Патрон Vac RC	60mg	60	50
186000375	Плашка, 96 лунок	10mg	30	1
186000373	Плашка, 96 лунок	30mg	30	1

186000867	Набор патронов (Oasis Method Development Kit)	3cc/60mg	30	По 10 HLB, MCX, MAX
	Вакуумная уста	новка для 96-лу	ночных плашек	
P/N	Описание			
097944	Extraction Plate Manifold Kit A		Вакуумная установка, комплект А. Содержит вакуумную установку (P/N 058041) с резервуаром, верхним уплотнением и крышкой и плашкой с 350-мкл лунками для сбора фракций	
097945	Extraction Plate Manifold Kit B		Вакуумная установка, Содержит вакуумную ус 058041) с резервуарс уплотнением и крышко 1-мл лунками для сбо	становку (P/N ом, верхним й и плашкой с
097946	Extraction Plate Manifold Kit C		Вакуумная установка, Содержит вакуумную ус 058041) с резервуарс уплотнением и крышко 2-мл лунками для сбо	становку (P/N ом, верхним й и плашкой с
058041	Extraction Manifold		Вакуумная уста	новка
058943	Sample Collection Plate, 350 μl, 50/box		Плашка для сбора фра 50 шт.	кций, 350 мкл,
058957	Sample Collection Plate, 1 ml, 50/box		Плашка для сбора фра шт.	кций, 1 мл, 50
058958	Sample Collection Plate, 2 ml, 50/box		Плашка для сбора фра шт.	кций, 2 мл, 50
058959	Sealing Cap For Coll 50/box	ection Plate,	Уплотнительная крышт 50 шт.	ка для плашек,

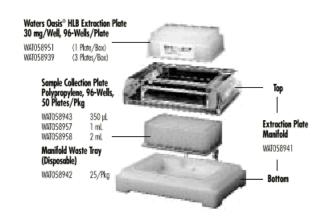
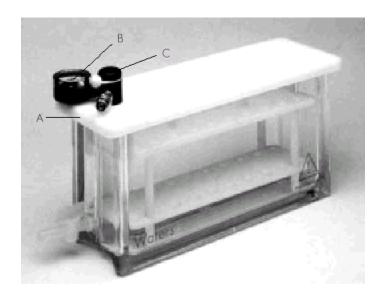



Рис. 5.1 Вид элементов вакуумной установки для экстракционных плашек.

	Вакуумная установка для патронов			
P/N	Описание			
200606	Extraction manifold, 20 position with rack for 13*75 mm tubes	Вакуумная установка на 20 позиций с подставкой для 13*75 мм пробирок		
200607	Extraction manifold, 20 position with rack for 13*100 mm tubes	Вакуумная установка на 20 позиций с подставкой для 13*100 мм пробирок		
200608	Extraction manifold, 20 position with rack for 16*75 mm tubes	Вакуумная установка на 20 позиций с подставкой для 16*75 мм пробирок		
200609	Extraction manifold, 20 position with rack for 16*100 mm tubes	Вакуумная установка на 20 позиций с подставкой для 16*100 мм пробирок		
200677	Extraction manifold, 20 position without rack	Вакуумная установка на 20 позиций с без подставки		
048160	Reservoir Adapter for 12, 20 & 35 cc cartridges	Адаптер для патронов на 12, 20 и 35 см ³		
085115	Vacuum Pump ⁵ , 220V, 50 Hz	Вакуумный насос, 220 В, 50 Гц		

Puc. 5.2 Вакуумная установка для экстракционных патронов.

 $^{^{5}}$ Вакуумный насос не входит в комплект вакуумной установки, заказывается отдельно.

Waters

6. ПРИМЕР АДАПТАЦИИ СТАНДАРТНОГО МЕТОДА

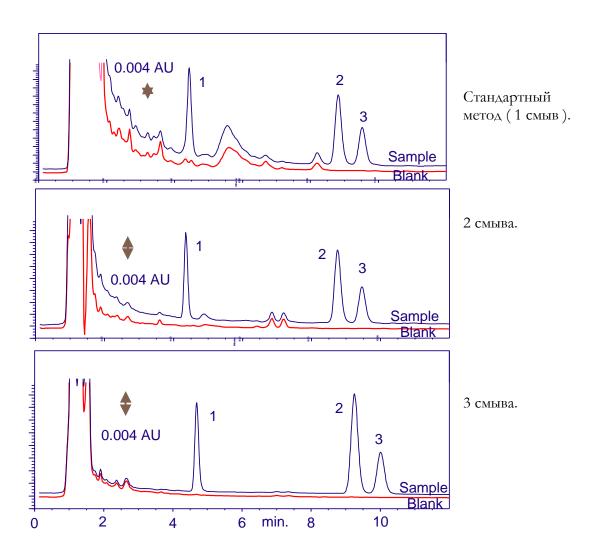


Рис. 6.1 Анализы экстрактов, полученных тремя различными методами.

Приведены хроматограммы трех экстрактов, полученных с помощью патронов Oasis HLB. Объектами интереса являются пики:

- 1. Minocycline
- 2. Tetracycline
- 3. Demeclocycline (внутренний стандарт).

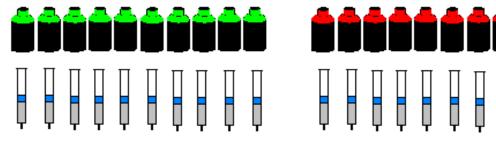
Они выглядят различно. Если на первой наблюдается значительное количество дополнительных пиков, то на третьей хроматограмме они отсутствуют вовсе.

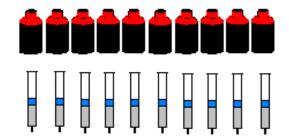
Для получения экстрактов в первом случае использовался стандартный протокол, во втором и третьем случае – оптимизированный.

Для оптимизации метода экстрагирования был проведен следующий эксперимент.

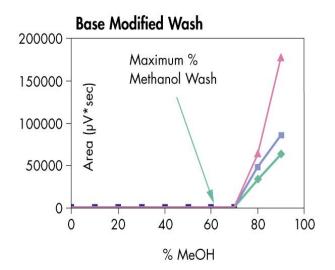
Приготовлены 20 образцов плазмы;

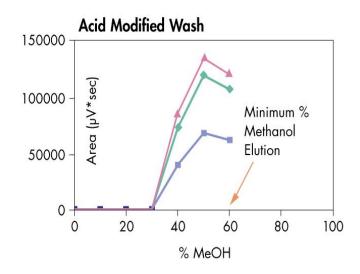
20 патронов Oasis HLB кондиционированы 1 мл метанола и уравновешены 1 мл воды; в патроны загружено по 1 мл образца;


затем каждый патрон промывался 1 мл элюирующего раствора, индивидуального для каждого патрона.


Первые 10 – водно-метанольным раствором с добавлением 2 % NH₄OH. Содержание метанола меналось от 0 до 90%

Вторые 10 – по той же схеме, но с добавлением 2% уксусной кислоты.





Смывы анализировались на ВЭЖХ, для обоих групп построены зависимости площади пиков от концентрации метанола в элюирующем растворе.

Результаты экспериментов представлены на двух графиках (для щелочных и кислых растворов), представляющих зависимость выхода веществ из патронов от концентрации метанола.

100 10000		rount raida (p 13)	
Base 2% Ammonium Hydroxide	Verapamil	Norverapamil	Methoxy- verapamil
0-70%	No Response	No Response	No Response
80%	34,095	47,482	6,358
90%	63,158	85,704	178,178

Peak Area (uVs)

A . 1 00/	reak Alea (pv3)		
Acid 2% Acetic Acid	Verapamil	Norverapamil	Methoxy- verapamil
0-30%	No Response	No Response	No Response
40%	73,146	32,269	86,789
50%	121,820	68,259	137,899
60%	109,145	61,830	123,229

Peak Area (uVs)

Полученные экспериментальные данные позволяют нам сделать важный вывод о природе исследуемых веществ. Очевидно, что они имеют щелочной характер, поскольку сильнее удерживаются сорбентом при использовании щелочного раствора (см. график на следующей странице). Теперь можно предложить улучшенный вариант протокола:

1-й смыв — 5% метанол в воде с 2% уксусной кислотой (исследуемые молекулы при этом хорошо удерживаются сорбентом).

2-й смыв — 65% метанола в воде с 2% NH₄OH (при этой концентрации метанола молекулы еще хорошо удерживаются сорбентом).

Элюция молекул — 65% метанола в воде с 2% уксусной кислотой (согласно эксперименту и теории щелочные молекулы хуже удерживаются с кислыми элюэнтами).

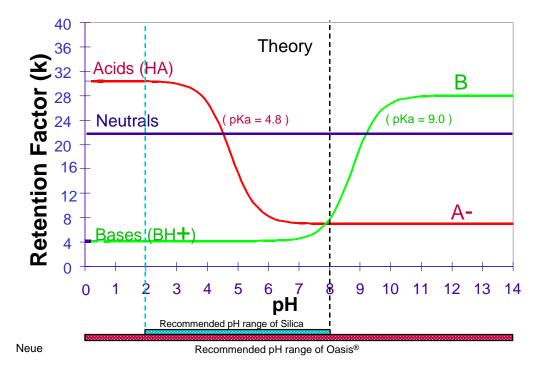


Рис. 6.2 Зависимость удерживания от рН элюэнта для кислых, нейтральных и щелочных молекул.

Третья хроматограмма на рис. 6.1 была получена с помощью следующего метода:

1-й смыв -5% метанол в воде с 2% уксусной кислотой.

2-й смыв — 5% метанол в воде с 2% NH₄OH.

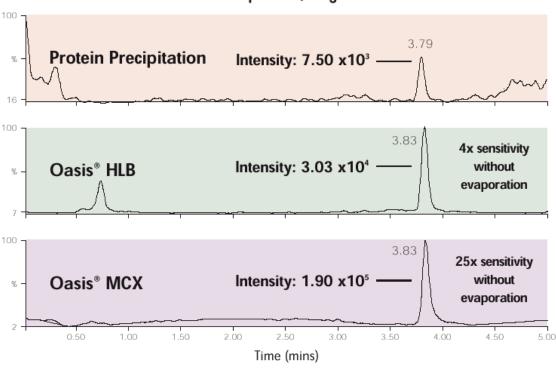
3-й смыв — 65% метанола в воде с 2% NH₄OH.

Элюция молекул – 65% метанола в воде с 2% уксусной кислотой.

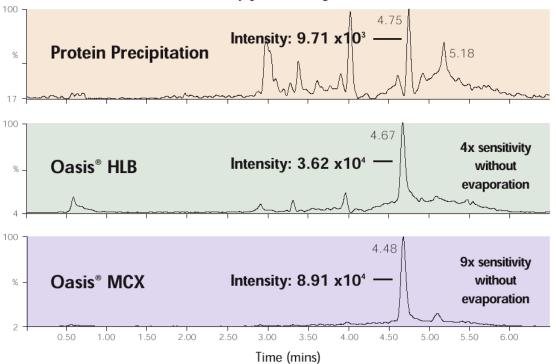
Компонент, концентрация,	Выход (Recovery) по 12 инжекциям, % / RSD		
$MK\Gamma/M\Lambda$	1 смыв	2 смыва	3 смыва
Verapamil, 0.14	101.5/ 3.39	101.0/ 3.1	89.6/ 0.96
Norverapamil, 0.092	164.1/ 10.8	106/ 3.8	90.2/ 2.02

Расчеты выхода веществ из патронов показывают наилучшую достоверность и стабильность у третьего метода.




7. ПЛАШКИ OASIS MICRO ELUTION.

Новые плашки Oasis μElution сочетают в себе патентованый дизайн многолуночных плашек, проверенную химию сорбентов семейства Oasis и generic протоколы пробоподготовки для проб объемом 25 мкл. Впервые стало возможным выполнять очистку и коннценрирование столь малых объемов. Отличные результаты достигнуты по сравнению с preсіраtion белков за такое же или более короткое время.


Палашки позволяют получить экстрракты, которые пригодны для прямого инжектирования, устраняя длительный этап выпаривания. Элюирование 25 мкл пробы без выпаривания в15 раз увеличивает концентрацию образца. Биологические образцы для ВЭЖХ/МS анализов могут быть подготовлены более эффективным и воспроизводимым образом.

Рисунки ниже показывают увеличение концентрирования пробы, подготовленной с помощью плашек Oasis.

Amitriptyline, 0.1 ng/mL

Условия хроматографического анализа, примененного для получения приведенных выше результатов.

ВЭЖХ	MS
Колонка: XTerra ® MS C 18, 2.1 x 30 mm, 3.5 µm Элюэнт A: Water + 0.5 % NH 4 OH Элюэнт B: ACN + 0.5 % NH 4 OH Поток: 0.2 мл/min Градиент: 5% - 95% В - 1 min. ВЭЖХ конфигурация: Waters Alliance ® 2795	Масс-спектрометр: Waters Micromass Quattro Triple Quadrupole Тип источника ионов: ESI (+) Температура источника: 150 °C Gas cell: 2.0 e-3 bar Argon Температура десольвации: 350 °C Поток газа: 500 л/час Сопе gas flow: л/час Сопе voltage: 25 в Collision energy: 20 Capillary voltage: 3.5 Kv MRM transition: Metoclopramide (внутренний стандарт) m/z 299.8 → 226.7 Propranolol m/z 259.9 → 154.9 Amitriptyline m/z 278.1 → 232.9
	Nortriptyline m/z $263.9 \rightarrow 190.8$

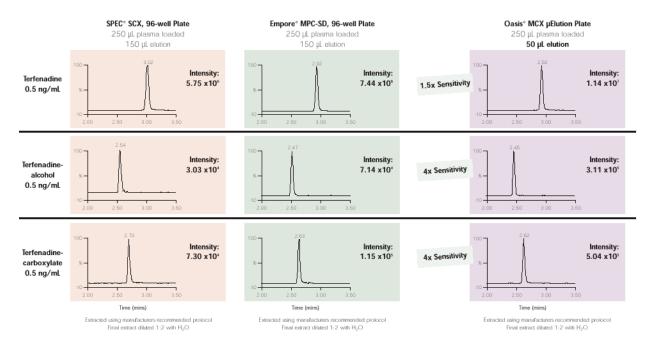
Протокол экстрагирования.

Тhe protein precipitation метод включает в себя этапы центрифугирования и выпаривания для получения чистого экстракта. Финальный объем образца (75 мкл) одинаков для всех трех методов, однако The Oasis HLB метод демонстрирует 4-х кратное увеличение чувствительности, а Oasis MCX 9-25 кратное.

protein precipitation	Oasis HLB µElution	Oasis MCX µElution
Add 50 μL spiked plasma (1 to 1000 pg/μL), 50 μL IS (10 pg/μL) in H 2 O Add 1 mL ACN to precipitate plasma Centrifuge the plasma at 3600 rpm for 30 minutes* Transfer the supernatant to another 2 mL 96-well container Evaporate the solution to dryness*	Condition with 200 µL MeOH Equilibrate with: 200 µL H 2 O Load 50 µL spiked rat plasma, 50 µL IS (10 pg/µL) in H 2 O Wash with 200 µL 5% MeOH in water Elute with 25 µL ACN:IPA 40:60 + 2% FA Dilute with 50 µL H 2 O, Inject 20 µL	Condition with 200 µL MeOH Equilibrate with 200 µL H 2 O Load 50 µL spiked rat plasma, 50 µL IS (10 pg/µL) in H 2 O Wash 1: 200 µL Water + 2% FA Wash 2: 200 µL MeOH Elute with 25 µL ACN:IPA 40:60 + 2% NH 4 OH Dilute with 50 µL H 2 O, Inject 20 µL

Reconstitute with 25 μL	
ACN:IPA (40:60)	
+ 2% NH 4 OH and 50 μL H	
2 O	
Inject 20 μL	

Comparison of Oasis MCX µElution Plate and Glass Fiber and Membrane 96-well Disk Plates — Up to 4x Increase in Sensitivity


he Oasis

μElution plate shows superior performance when compared to other low elution disk plate products used according to recommended protocols. A generic Oasis

MCX

method for terfenadine with 50 μ L elution, dilution and direct injection shows better sensitivity than the membrane and glass fiber plates, which require a 150 μ L elution volume for complete analyte recovery. The Oasis

µElution plate enables sensitivity gains and delivers high performance without the time consuming evaporation step.

Номера по каталогу			
P/N	Описание		
186001828	HLB μElution Plate	96-луночнная плашка HLB	
186001829	MAX μElution Plate	96-луночнная плашка MAX	
186001830	MCX μElution Plate	96-луночнная плашка МСХ	
725000417	SPE Vacuum Pump 115V, 60 Hz	Насос 115в, 60 Гц	

725000418	SPE Vacuum Pump 240V 50 Hz	Насос 240 в, 50 Гц
186001831	Manifold for Oasis μElution Plate	Вакуумная установка под плашки μElution
WAT058942	Reservoir tray, 25/box	
WAT058943	Sample collection plate, 350 µl, 50/box	Плашка для сбора фракций, 350 мкл, 50 шт.
186000857	Sealing cap for 96-well plate PTFE/silicone pre-slit	Уплотнительная крышка для плашек, 50 шт.